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Abstract

In agent-based simulation codes, where rule bases guide agents through
a process, discovering desirable rule sets is crucial. In the motivating
example for this report, “agents” could represent soldiers in a simu-
lated military conflict and a rule base defines when individual agents
take various actions (e.g., advancing towards enemy lines or shooting
at enemy soldiers). We develop a sequential approach for identifying
rule bases that provide desirable outcomes, as well as giving an under-
standing of which rules are most important. By working in the space
of contingency-table-like odds ratios instead of in the space where the
rule base is directly defined (e.g., as a bit string with a finite alphabet),
the fitness function behaves more smoothly and optimization is more
easily pursued. The computational approach also nicely complements
results from subjective visualization procedures.
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1 Introduction

Increased computing power in recent years has allowed for computer sim-
ulation of increasingly detailed processes. Agent-based simulation involves
individual “agents” which interact with each other and carry out various
functions. In the example considered later, each agent is a soldier fighting
in a simulated conflict. Other examples of agent-based simulations include
such wide ranging applications as vehicles moving in a transportation net-
work (Nagel, Rickert, and Barrett 1997), biological organisms evolving in
the presence of threats (Jaffe et. al. 1997), individual investors behaving as
part of a collective financial system (Deadman 1999), and products being
assembled in an industrial manufacturing process (Fogerty and Bull 1995).

In such simulations, each agent consults a rule base that defines what
actions take place at each time step. For the military example to follow,
soldiers may move, adopt defensive postures, shoot at enemy soldiers, and
so on. Of interest are properties of the system’s emergent behavior, such as
the probability that a particular army wins the battle.

To provide realism, agent-based codes are often stochastic. In military
simulations, simple examples of stochastic elements are line-of-sight proba-
bilities (i.e., the chance that one soldier will see another who's in the vicinity)
and kill probabilities (i.e., the probability that one soldier will kill another,
given that he sees him and is shooting at him). More generally, stochastic el-
ements in agent-based simulations can involve initial conditions, agent travel
time distributions, random system breakdowns and times to repair, queuing
phenomena, or even agents’ choices of actions. Owing to such stochastic
behavior, statistical inference is essential.

Frequently, it is of interest to identify the best rule base governing agent
behavior. Depending on the simulation involved, the term “best” could mean
finding the rule base that gives an army its best chance to win a simulated
battle, or whose simulated traffic is in best agreement with observed data,
or whose simulated widget production is the greatest. In this report, we
express rule bases as fixed-length strings with finite alphabets (tree structures
could alternatively be used), so that standard optimization techniques can
be pursued, such as genetic algorithms and simulated annealing. As will be
seen, however, rule base fitness behaves irregularly as a function of bit strings,
which adversely affects the optimization process. An additional complication
is that fitness is affected by factors other than the rule base, such as the nature
of the competing forces together with their arms and other equipment.



Moreover, it is not enough to obtain a “black box” solution providing
little intuition regarding which rules matter and which ones don’t. For pur-
poses of using simulation results to support training of actual soldiers, it is
important to identify specific rules that greatly affect performance. Because
it is impractical to effectively teach an entire rule base covering all possible
situations in which an agent could find himself, extracting important if-then
relationships is essential. The approach described here achieves that goal.

The approach discussed here also differs from visualization in that results
are scientifically reproducible. Although visualization allows the user to see
relationships that might be difficult to discern otherwise, this strength can
also be a serious weakness. In the extreme, visualization can be similar to
psychology’s Rorschach test, where people give highly personalized impres-
sions as to what they “see” in ink blots.

In this paper, we describe a sequential method to extract useful rule
bases for agent-based simulations, and apply it to a simplified problem. The
approach is regression-based, can be implemented with standard statistical
software, and yields results that nicely complement those from visualization
or from optimization techniques such as genetic algorithms.

2 Combat Simulation

2.1 Background

To focus ideas, consider a simplified armed conflict between the good guys
(more formally, “the blue team”) and the bad guys (“the red team”). Given a
set of initial conditions, simulations are performed to develop understanding
of the conflict’s dynamics. There are many such war gaming codes (see,
e.g., llachinski 1997, as well as the TRADOC and CACI reports given in the
reference list).

In agent-based simulation, it is common to simulate action during discrete
time steps. At each time step, each agent evaluates his status, uses a rule
base to determine what actions to take, and the code then synchronizes the
actions for all agents during the time step. Usually, simulated behavior is
stochastic — e.g., if one soldier shoots at another, the outcome is computed
using a specified probability distribution that incorporates factors such as the
distance to the other agent and whether that agent is in defensive posture.

Of interest is the so-called emergent behavior of the system, which arises



upon evolving the collective actions of the agents over the simulated time
steps. Emergent behavior is a function not only of rule base that guides
agents’ actions, but also of the initial conditions for the conflict and of how
the soldiers are equipped (e.g., their weapons, vehicles, sensors and proper-
ties thereof). In what follows we focus exclusively on the rule base, fixing
the initial conditions and equipment. The goal is to find rule bases that
maximize, to the extent possible, blue team performance.

At present, military analysts often carry out a heuristic tweaking of rule
bases by varying one factor at a time, trying to identify important actions.
In addition, available optimization procedures (e.g., genetic algorithms) are
sometimes used to provide solutions. Though helpful, the output of such
algorithms frequently has a black box quality, providing an optimum but
little intuition about the importance of individual rules.

2.2 JIVES Town

We consider a simulated urban conflict in a notional city called JIVES Town.
The acronym JIVES (Joint Integrated Virtual Environment for Simulation)
refers to a specific combat simulation code written in the Military Systems
Group at Los Alamos (Upton et. al. 1998). This code is well suited to handle
input/output for multiple rule base runs and, more importantly, it is research
friendly in that it allows great flexibility in bookkeeping. Thus, the user can
track aspects of immediate interest, without being inundated with unwanted
output. This feature is valuable with respect to calculating the odds ratios
discussed later.

A terrorist-scale conflict is examined, where 8 blue agents square off
against 4 red agents. At time zero, the blue agents start at locations spec-
ified depicted in Figure 1 with orders to advance towards city hall. They
have 100 time steps to get there. The red agents are in a defensive mode,
stationed along a side street to prevent blue from advancing. They have a
fixed rule base, remaining in their initial locations, always in a defensive pos-
ture, always looking, and shooting whenever they sense a blue agent. The
blue agents’ rule base is to be determined: blue agents are allowed to move,
look, shoot, change their posture, and if they are both shooting and changing
posture, to invert the sequential order in which these actions are carried out.

The status of each blue agent at each point in time is described by five
binary variables:



(a) whether the agent senses one or more red agents in the immediate
vicinity or not,

(b) whether the agent senses one or more blue agents in the immediate
vicinity or not,

(c) whether the agent is under fire or not,
(d) the agent’s current posture (offensive or defensive), and
(e) whether the agent has reached his goal, or not.

Regarding (d), the agent’s posture, each agent may choose to be in offensive
posture (which allows movement of a greater distance per time step) or de-
fensive posture (which reduces vulnerability to enemy fire). Regarding (e),
an agent is defined to be at his goal once he is within a specified distance of
a goal location.

The possible (binary) actions that each blue agent can take at each time
step are

(a) if sense one or more red agents in the immediate vicinity, shoot at one
of them, or not,

(b) change posture (e.g., from offensive to defensive), or not,

(c) if shooting and changing posture, decide in which sequential order in
the same time step these actions take place,

(d) move towards the goal at a posture-dependent rate, or not, and

(e) look around the immediate vicinity (checking for presence of other
agents to be sensed in the next time step), or not.

It is desired to find the rule base which gives the best average performance
for blue team. That is, to determine under what circumstances blue agents
should look, move, adopt defensive postures, and so on. The rule base for the
red team is fixed throughout, avoiding for now problematic game-theoretic
issues where the red team modifies its own rule base to counter changes in
the blue team’s tactics.

The human analyst specified, a priori, a rule base that seemed to him
to be optimal based on experience with other simulation codes. That rule
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base is displayed in Table 1 and specifies for each blue agent to always look,
always move, to shoot if in defensive posture and sense a red agent nearby,
to adopt defensive posture and then shoot if in offensive posture and sense a
red agent nearby, to adopt a defensive posture if under fire but don’t sense a
red agent nearby, and to adopt offensive posture if in defensive posture and
don’t sense a red agent nearby and are not under fire. Our goal is to find
better rule bases, if possible, and to understand the importance of taking
various actions under various conditions.

3 Analysis of Simulation Results

3.1 Modeling the Data

In the approach discussed below, we use regression modeling to aid in dis-
covering good rule bases. Because emergent behavior is complex, there is
no first-principles theory for it and the regression model is an empirical one,
intended to identify important if-then rules.

We take as the response variable the average number of blue agents who
reach the goal and are alive at the end of the battle. In a sense, this fitness
function is equivalent to the probability of a single blue agent’s success (just
divide by 8). An initial tendency is to model the response as a function of
covariates. As is apparent from Table 1, a rule base is completely defined by
a string of 160 bits, detailing which of the 5 actions are taken under each of
the 32 possible conditions an agent might face in a given time step.

Models based on the related bit string could be considered. Upon allowing
model parameters for combinations of the 160 bits to explore effects of actions
taken 2 and 3 at a time, such models contain literally thousands of terms. If
it were practical to obtain results from millions of rule bases, models of this
form could be pursued, together with the dimension reduction techniques
required to distill the results into something interpretable.

Such an approach is tractable in the JIVES Town setting when there is
access to high performance computing, but not in more realistic problems
where the number of status/action variables is much larger than the 10 at
present, where such variables may be polytomous (vs. binary) or continuous,
and where different subsets of agents can have their own respective rule
bases. Thus, in more realistic simulations there are far more rule bases
than the roughly 10% in the current problem (meaning that the space to be
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Table 1: The rule base supplied by the expert analyst. The first five columns
are status variables, and the next five columns describe the actions that
blue agents take when encountering the conditions given by the five status
variables. A ‘1’ in the table denotes a ‘yes’ and a ‘0’ denotes a ‘no.’



searched is much larger), and there is the double whammy that the additional
simulation complexity means that a single simulated battle requires far more
CPU time than for a single JIVES Town run. Consequently, making millions
upon millions of runs is generally impractical.

With an eye towards making progress in more complex settings, we choose
to model the fitness function in terms of other output responses instead
of modeling it in terms of rule base descriptors such as bit values in a bit
string. The response variables we choose are more meaningful and their space
has much smaller dimension than for combinations of bits. In addition, the
fitness function behaves more smoothly as related to those responses than
with respect to bits in a bit string, where altering a single bit can greatly
affect fitness.

Regressor variables to follow are formed by using log odds ratios of a rule
base’s empirical behavior. For the i (of 5) action variables in Table 1, define
its “main effect” as the odds ratio

(0.5 4 #times take action 7)/(1 + #times could have taken action 7)
(0.5 + #times didn’t take action i) /(1 + #times could have taken action i) -

i =

If all 8 blue agents were to remain alive for all 100 time steps in all r replicated
runs for the rule base, then the number of times that action ¢ could have been
taken would be 8 x 100 x r = 800r. Main effects for the 5 status variables are
defined similarly, counting the number of times that each condition occurred
and didn’t occur. The factors 0.5 and 1 in the odds ratio expression for «;
are included to avoid numerical problems with zero counts.

Regressor variables are next constructed for the “two-factor interactions”
between variables. For action variable ¢ and status variable j, for example,
this interaction is summarized by the odds ratio

(0.5 + #times take action ¢ when in status j7)/(1 + #times in status j)
(0.5 4 #times don’t take action ¢ when in status j)/(1 4+ #times in status j)

ﬂij =

(0.5 + #times don’t take action i when not in status j)/(1 + #times not in status j)
(0.5 + #times take action ¢ when not in status j)/(1 + #times not in status j)

The term (3;; is related to conditional independence structures in contingency
tables (see, e.g., Bishop, Fienberg, and Holland 1975, p. 13). That is, consider
the 2 x 2 table having row labels “take action ¢” and “not take action ¢” and
column labels “in status j7 and “not in status j”. Cell counts for the table
denote the total number of times during the simulation of the rule base that



blue agents were in the status indicated and acted as described. From these
counts (3;; is computed. Were the log of 3;; to equal zero, for example, there
would no relative preference, in an overall sense, for agents to take action ¢
more/less often when in status j than when not in status j.

The odds ratios {a;}, {8;;}, and their counterparts for higher-order inter-
actions summarize, in an aggregate sense, the behavior of agents who adhere
to the rule base. More thoroughly, odds ratios could be extended to sum-
marize sequences of actions covering 2 or 3 time steps, in an attempt to
understand complex behavior and to account for agents having a memory of
past events.

[Note. Odds ratios from rule bases are not interpretable in exactly the
same way as for contingency tables. The cell counts in a table of rule firings
don’t evolve from an independent, identically distributed (i.i.d.) sampling
process. Also, some care in interpretation of these odds ratios is occasionally
required owing to Simpson’s paradox issues (Samuels 1993) for collapsed
tables. Nonetheless, we have found odds ratios to be valuable in model
fitting.

Our approach is to regress the average response for each rule base on
the set of log odds ratios. Questions such as “do rule bases whose agents
move frequently perform better than rule bases whose agents don’t?” can
then be directly addressed by examining parameter estimates from the fit.
And higher-order parameters also have interpretable meaning. For example,
suppose that the estimated coefficient of the log odds ratio 3;; for the action
variable “move” and status variable “under fire” were negative and deemed
significant. This would indicate that rule bases performed better when their
agents moved less often when under fire than when not under fire. Although
such information doesn’t completely determine under which conditions agents
should move, it helps define a good set of rule bases for future consideration.

3.2 Searching Rule Base Space

Search techniques should be tailored for the problems to which they are
applied. Important aspects of the surface to be optimized are the following.

(a) Expressing the blue team rule base in the form of Table 1, there are 32
possible status conditions at each time step and 8 to 32 possible actions
for each condition (recall the constraints that an agent must sense an
enemy in order to shoot, and must be shooting and changing posture
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in order to choose the sequential order in which these two actions take
place). Thus, the space of allowable rule bases contains roughly 103
members, precluding anything approaching an exhaustive simulation
of all allowable rule bases.

(b) The code is stochastic, so that multiple simulation runs are needed to
estimate the average performance of an individual rule base.

(c) The vast majority of allowable rule bases give terrible performance,
with few if any blue agents ever reaching the goal.

(d) The surface is highly irregular when expressed as a function of bit string
representation; e.g., changing a single action for a single status in a rule
base can greatly alter average performance.

The bottom line is that it is impossible to guarantee that a global optimum
will be found through any optimization procedure. A realistic goal is to
understand the if-then relationships important to good performance.

Despite the above complications, the problem is well suited to genetic
algorithms, which are adept at searching spaces of bit strings. This approach
has been pursued with the ISAAC code (Ilachinski 1997), but the black box
nature of the solution often doesn’t help in understanding which rules are
important and which aren’t.

In order to generate data for regression modeling, it is necessary to sim-
ulate output from several rule bases. An obvious question is how to choose
those rule bases. In what follows, we take a sequential approach, common to
statistical applications of experimental design in other settings. That is, we
start with an initial set of rule bases, analyze the results, choose another set
of rule bases for further investigation, and so on.

For the first iteration of this sequential process, we choose a space-filling
design. Many approaches to filling bit string space exist. In what follows,
we construct random rule bases by letting each of the 160 bits be one or zero
independently with probability 1/2 each. We thus obtain 640 rule bases, and
run each of them ten times. This requires less than 24 hours of computing
time on a PC. At this early stage of the sequential design, a few runs per rule
base are sufficient to distinguish very bad rule bases from more promising
ones. In later iterations of the sequential design, we require more runs in
order to detect more subtle differences, because variability increases with

11



the average response and the rule bases of greatest interest have the largest
variability.

This initial set of 640 rule bases falls far short of filling the space of roughly
10%° possible rule bases very densely, but it nevertheless gives some useful
results. An artifact of space filling designs in this context is that the vast
majority of rule bases chosen randomly gave poor blue team performance:
in our design, 557 out of 640 (87%) fail to have any blue agents reach their
goal, and only 24 rule bases (4%) average at least one agent per run achieving
the goal. This poor performance is not necessarily bad, in that it’s helpful
to learn what rules an agent should not follow. When combined with data
from good rule bases run in later iterations of the sequential design, the data
from poor rule bases aids in parameter estimation. Interestingly, the best of
the 640 randomly chosen rule bases yields an average of 3.6 blue agents at
the goal, which is very close to the performance of the rule base constructed
by the expert analyst.

In early iterations of the design, parameter estimation is highly variable.
Because most of the rule bases are poor ones, the model fitting process is
similar to fitting outliers in the presence of multicollinearity. Certain es-
timated coefficients in the model have the wrong sign. For example, the
coefficient for the action “Look” as estimated from the randomly generated
rule bases is negative, which gives the (incorrect) impression that it is better
for agents not to look. The cause of this problem is the multicollinearity
between the “Look” and “Shoot” actions (i.e., because it is necessary to look
before shooting, rule bases whose agents rarely look also rarely shoot, those
whose agents shoot often also look often. Thus, the empirical analysis has
difficulty separating the effects of looking from the effects of shooting).

Upon inspection of the results from the first iteration, a second group
of 384 (or 6x64) rule bases is run, with 100 replications of each rule base. For
each of the 6 groups, certain actions are fixed based on the most important
regression coefficients and the rest of the rule base is filled out at random.

The 6 groups of rule bases examined are:
1) Always shoot when sense red agents nearby.

2) Never look.

(
(
(
(4

)
)

3) Always be in defensive posture.
)

Move if a red agent is sensed nearby.
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(5) Don’t change sequential order (of shooting and changing posture) when
under fire.

6) Shoot when sense a red agent nearby and a blue agent is not sensed
g g
nearby.

Results from these runs are combined with those from the 640 randomly
chosen rule bases and parameters in the regression model are re-estimated.

These results indicate promising pairs of actions to consider. Six more
groups are then considered, the corresponding pairs of actions being

(1) Always move and shoot when sense a red agent nearby.
(2) Always look and shoot when sense a red agent nearby.

(3) Always be in defensive posture and shoot when sense a red agent
nearby.

(4) Always move and be in defensive posture.
(5) Always look and be in defensive posture.
(6) Always move and look.

As in the first iteration, bit values not fixed are selected at random, there
being 64 such rule bases generated for each of the 6 groups. The ensuing
data are then combined with earlier results and model parameter estimates
are updated.

The sequential process continues, using model results to determine new
rule bases to consider, simulating according to those rule bases, combining
the results with those obtained previously, updating parameter estimates,
and so on.

We chose the rules to fix in each group of rule bases by examining esti-
mated regression coefficients. Consider Table 2, which contains parameter
estimates for a fitted model to all of the data from all of the rule bases that
were simulated throughout the sequential design. Of the main effects for
the action variables, the largest coefficients are for Move (4-0.14) and Look
(4+0.09), indicating that rule bases whose agents moved and looked most fre-
quently performed better than rule bases whose agents didn’t. The largest
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status-by-action variable interaction is for SeeRed x Shoot (+0.22), indicat-
ing that rule bases whose agents shoot when the see red agents nearby do
better than rule bases whose agents don’t.

Such coefficient values lend themselves to candidate rule bases. For exam-
ple, the large coefficient for the Move main effect could generate a candidate
rule base whose agents move always and who take other actions (e.g., when
to change posture) in a manner defined randomly. Two-factor interactions
lead to similar candidate rule bases, e.g., agents should always shoot when
a red agent is sensed nearby and should take other actions in a manner de-
fined randomly. In the analysis here, decisions as to how many actions to
hold constant per iteration of the sequential design are made in a subjective
manner; perhaps a more formal algorithm for this could be developed in the
future.

More thorough interpretation of the estimated regression coefficients in
Table 2 is given in the next section.

3.3 Estimated Regression Model

After four iterations of rule base designs, the sequential process was (arbitrar-
ily) terminated. The regression model as fit to all of the data is summarized
in Table 2. Its R? value, 0.83, is indicative of reasonable predictive power.

Candidate odds ratios for the model involved 250 terms. There were 5
odds ratios summarizing main effects of action variables, 5 more for main
effects of status variables, 10 for two-factor action-by-action interactions,
10 for two-factor status-by-status interactions, 25 for action-by-status in-
teractions, 50 for three-factor action-by-status-by-status interactions, 50 for
three-factor action-by-action-by-status interactions, and 100 for four-factor
action-by-action-by-status-by-status interactions. Models of this form can be
easily fit using standard statistical software (in our case, the S-plus package).
Estimates were obtained using ordinary least squares, which are relatively ef-
ficient in light of the moderate heteroscedasticity present.

Upon examining the candidate odds ratios, terms which appeared to add
little to the fit were dropped from consideration. By the end of the fourth
iteration of the design, the final model incorporated 38 terms, as described
in Table 2.

By examining the estimated model coefficients in the final model, impor-
tant if-then relationships are revealed. Of all the model coefficients involving
action variables, the largest in magnitude (+0.22) corresponds to the shoot-
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Variable | coef std.err. tstat p value
Intercept | -0.18 0.18 -0.98 0.33
SeeRed | 0.71 0.12 6.17 <0.001
SeeBlue | -0.51 0.12 -4.44  <0.001
UnderFire | -0.22 0.03 -6.98  <0.001
Posture | -0.13 0.01 -11.43  <0.001
Shoot | 0.03 0.03 1.07 0.28
Move | 0.14 0.02 8.02 <0.001
APosture | 0.00 0.004 0.02 0.99
Look | 0.09 0.02 4.1 <0.001
AOrder | 0.00 0.003 0.08 0.93
SeeRed x SeeBlue | -0.25 0.02 -16.8  <0.001
SeeRed x UnderFire | 0.31 0.10 3.11 0.002
SeeRed x Posture | -0.09 0.01 -8.72  <0.001
SeeBlue x UnderFire | -0.27 0.09 -2.91 0.004
SeeBlue x Posture | 0.08 0.01 6.71 <0.001
UnderFire x Posture | -0.09 0.01 -6.87  <0.001
Shoot x Move | 0.09 0.02 5.13 <0.001
Move x Look | 0.01 0.003 2.94 0.003
SeeRed x Shoot | 0.22 0.02 13.29  <0.001
SeeRed x Move | 0.04 0.01 3.24 0.001
SeeBlue x Move | -0.07 0.01 -6.73  <0.001
SeeBlue x Look | -0.06 0.01 -6.38  <0.001
UnderFire x Move | -0.04 0.006 -6.69 <0.001
Post. x Look | -0.02 0.004 -4.87  <0.001
SeeRed x SeeBlue x Shoot | -0.2 0.01 -12.74  <0.001
SeeRed x SeeBlue x Look | 0.03 0.009 3.47 0.001
SeeRed x Posture x Shoot | -0.05 0.007 -8.19  <0.0010
SeeRed x Posture x Move | -0.04 0.006 -7.35 <0.001
SeeBlue x Posture x Shoot | 0.06 0.009 6.36 <0.001
SeeBlue x Posture x Move | 0.03 0.006 4.94 <0.001
SeecRed x Shoot x Move | 0.03 0.008 3.04 0.002
SeeBlue x Shoot x Move | -0.05 0.009 -5.62  <0.001
SeeBlue x Shoot x Look | -0.05 0.01 -4.93 <0.001
UnderFire x Shoot x Move | -0.01 0.004 -3.87  <0.001
Posture x Shoot x Look | -0.01 0.003 -3.86 <0.001
Posture x Move x Look | -0.006  0.002 -3.35 0.001
SeeRed x SeeBlue x Shoot x Look | 0.03 0.006 5.62 <0.001
SeeRed x Posture x Shoot x Move | -0.04 0.004 -8.48 <0.001
SeeBlue x Posture x Shoot x Move | 0.02 0.005 4.25 <0.001

Table 2: Estimated regression model.
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by-sense-red interaction. Stated simply, blue agents who shoot when sensing
red agents nearby do better than blue agents who don’t. Similarly, the main
effects for moving (+0.14) and looking (40.09) are positive and significant,
indicating that agents should be moving and looking a large portion of the
time (if not doing so all of the time). These conclusions aren’t earthshak-
ing, but the point is that a purely empirical review of simulation results has
produced them.

Regarding one of the status variables, note that the coefficient for pos-
ture (-0.13) is significantly negative. When coupled with an insignificant
“change posture” main effect and and absence of interactions with a “change
posture” component, this indicates that rule bases whose agents remained
in defensive posture a large portion of the time performed better than rule
bases whose agents didn’t. Indeed the best observed rule base (Table 3 of
the next section) had this quality.

Interestingly, agent posture is one area where the modeling approach
yielded a different solution than was postulated initially in the expert rule
base. Recall that the expert rule base involved agents being in defensive
posture only when encountering red agents or under fire. The number of
time steps involved in these simulations, 100, is sufficiently large that agents
can be in defensive posture all of the time, move most of the time, and still
reach the goal. Thus, the fitness function does not reward the increased rate
of movement offered by offensive posture, while it penalizes the increased
vulnerability to enemy fire. Were a smaller number of time steps to be
involved or a different metric used to define mission effectiveness, this result
might change.

Another area where the modeling approach appears to differ with the
expert rule base is related to the Movex UnderFire interaction term (-0.04).
This indicates that there may be some benefit to agents who don’t move some
of the time when under fire, perhaps allowing trailing blue agents who are
not under fire to catch up with them, thereby creating a numerical advantage
when encountering red agents. While this result doesn’t specify exactly when
agents should/shouldn’t move, it indicates a behavior worth exploring. As
it turns out, the agents in the best rule base we encountered did not move
when under fire.

One point of this analysis is to show that using modeling and a purely
empirical approach, it is possible to venture into parts of the rule base space
that might not be investigated otherwise. Because the use of expert opinion
will (and should) be used as part of an overall analysis, the use of modeling
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to provide complementary results is appealing.

Also of interest in the above analysis are the parameters not included in
the model, which can help in identifying actions that are unimportant. Note
from Table 2 that the “change order” action variable contributes nothing.
In other words, it appears to make no difference, insofar as fitness is con-
cerned, whether agents change posture before or after they shoot at nearby
red agents. To some extent, this effect is confounded with the posture main
effect: agents shouldn’t be in offensive posture to begin with, and so they
shouldn’t be changing from offensive posture either before or after shooting.

Another variable missing from the model is the “at goal” status variable.
Under the conditions of this simulation, virtually the only way for a blue
agent to reach the goal is for all the red agents to be dead. In the best rule
base we encountered, for example, the average number of red agents alive at
the end of 100 time steps is 0.02. Thus, it doesn’t matter what a blue agent
does or doesn’t do by the time he gets to the goal.

Some of the interaction terms in Table 2 simply measure the effect of
certain circumstances. For example, consider the SeeBluexLook interaction
term, which is negative (-0.06). Even though it may be best to look when
having sensed blue agents nearby, there is less benefit to doing so than looking
when blue agents are not nearby.

Some of the estimated coefficients in Table 2 may appear counterintuitive
at first. The coefficient for the main effect of sensing red is large and positive,
reflecting the fact that rule bases which performed best also sensed red agents
frequently, while those performing worst (e.g., if blue agents never moved
enough encounter red agents, they never moved enough to reach the goal)
sensed red the least.

[Note. The standard errors, t statistics, and p values as give in Table 3
must be taken with a grain of salt. There is no theory formally justifying
the modeled relationship (i.e., that the response behaves linearly in the log
odds ratios) and the heteroscedastic nature of the data (i.e., the variability
in the response increases with the magnitude of the response). Consequently,
the usual least squares output as listed in the table should be viewed as an
approximation to a more detailed model, whose purpose is to help guide the
search of rule base space.]

17



3.4 A Good Rule Base

Of the rule bases actually simulated, the one having the best fitness (as
measured by the average number of blue agents reaching the goal and being
alive at the end of 100 time steps) is given in Table 3. Its fitness, averaged
over 200 simulated runs, is 4.6 blue agents at the goal, substantially greater
than the 3.5 agents to the goal for the rule base determined a priori by the
human expert.

Some primary features of this rule base are that blue agents:

a) are always in defensive posture,

(
(b

)

) move most of the time, but never when under fire,
(c) shoot whenever they sense red, and
(d) are never under fire by the time they reach the goal.

It is not claimed that the rule base in Table 3 maximizes performance over
all 10%® possible rule bases. Indeed, because only about 1500 different rule
bases were actually simulated by the sequential design, many combinations
of rules weren’t even considered, and the above analysis only summarized
effects of actions that were actually taken.

One method to marginally improve the rule base in Table 3 is to do a local
search around it. For example, making small changes to the corresponding bit
string and simulating would likely allow for a local improvement. If expert
opinion were to be used, certain obvious improvements to the above rule
base (e.g., agents should always look because there is no penalty for doing
so) could also be considered. Still another possibility is to use the best several
rule bases from the sequential approach as constituting a first generation for
an evolutionary algorithm or other heuristic optimization algorithm.

Included in Table 3 are two columns labeled “Mean” and “SD.” The
“Mean” column summarizes the average number of times, over 200 replica-
tions of the rule base, that each combination of status variables occurred
during simulation of the rule base. The “SD” column is the standard de-
viation associated with the number of times those circumstances occurred.
While rules that fire often need not be important (e.g., if most of the time it
doesn’t matter what blue agents do, but there are crucial moments where it
matters greatly), examining the number of times each rule fires is helpful in
understanding the dynamics of the simulation. In the rule base summarized
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Table 3: Best rule base encountered during sequential design.
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in Table 3, for example, many combinations of status variables never occur
at all.

4 Discussion

4.1 Modeling Benefits

As illustrated in the example, it is possible to extract simple rules from
empirical models. Working in the space of odds ratios has advantages relative
to working in the space of bit strings or trees, as already noted. Obvious
important actions (e.g., agents should move, look, and shoot if sense red
agents nearby) can be extracted, together with less obvious ones (e.g., always
remain in defensive posture) as well as actions that make no difference (e.g.,
it doesn’t matter what agents do when at the goal). Such basic guidelines
can be communicated in a training environment.

If standard optimization techniques were to be used in searching the space
of rule bases, the data generated would be useful for regression modeling, in
order to better understand which rules matter and which ones don’t. Such
an effort would involve obtaining results from all rule bases involved in the
search, not just from the ones giving best results. And, in a general setting,
the simulation code must be research friendly insofar as producing output
for important variables of interest, such as odds ratios.

We have found that modeling of log odds ratios is also helpful in debug-
ging. By running many rule bases, especially those augmented by partial
randomization, results are obtained from regions of the rule base that may
not have been fully thought through. Rule bases which lead to outliers from
the model are obvious candidates for further inspection. A useful tool in
this regard is to save the random number seeds along with other simula-
tion output, thereby allowing results to be reproduced in debug mode, where
identifying errors in the code is more straightforward.

All of which is not to say that modeling is the only way to extract useful
rules and help detect coding errors, of course. But it nicely complements
existing methods to those ends.
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4.2 Rule Base Fitness

The fitness of a rule base is heavily dependent on the scenario and other para-
meters. As noted earlier, the act of remaining in defensive posture throughout
works well for the current 100 time step limit, but might not be so effective
if it were necessary to reach the goal more quickly. Along similar lines, a
don’t-move-very-often-when-under-fire rule allows for blue agents to improve
clustering when attacking red; of course, if red agents had hand grenades,
that same clustering could be a poor tactic.

Generally speaking, rule base fitness can also depend on the underlying
variability. Consider the case where the fitness function is the probability of
the blue team killing all of the red agents. When the blue team is decidedly
superior to the red team, it is often to the blue team’s advantage to decrease
the spread of outcomes. On the other hand, if the blue team were inferior,
it might want to increase the spread in order to give it the best chance of
winning. In the case at hand, it turns out that good rule bases lead to slightly
over half of the blue agents reaching the goal, so that maximizing the average
is a reasonable objective.

In many cases, rule base fitness has a multivariate flavor. For example,
it may be desirable for the blue team to win the battle as quickly as possible
and to minimize its casualties in the process. Such goals may conflict with
each other, and definition of rule base fitness must incorporate multiple con-
siderations. In these cases, building models separately for each consideration
aids in understanding the big picture.

Lastly relative to the subject of rule base fitness is the issue of co-
evolution. Once the blue team establishes tactics, the red team may find
it desirable to adjust its own rule base. Such adjustment could be pursued
using the modeling process as described here, simply reversing the roles of
blue and red. In the extreme, co-evolution has a game-theoretic infinite
regress component to it, complicating the optimization.

4.3 Future Efforts

As noted earlier, the sequential design and analysis for JIVES Town data was
done subjectively. That is, there was no “cookbook” or recipe that was fol-
lowed. In an ideal world, sequential design and analysis could be completely
automated. If that were the case, users with little knowledge of statistics and
experimental design could take full advantage of the methodology. Unfor-
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tunately, there aren’t any good expert systems around for doing regression
modeling on the fly with decent diagnostics (e.g., looking for outliers, and so
on). And while assorted subset selection algorithms have been implemented
in commercial software, using those algorithms to define rule bases for sub-
sequent simulations is also problematic. Consequently, we have focused on
a manual implementation of the approach, postponing automation until a
later date.

More immediately, direct comparison can be made between the modeling
approach described herein and standard optimization procedures, such as
simulated annealing. Although it seems likely that those procedures would
find slightly better rule bases (while requiring considerably more code runs
in the process), such speculation should be confirmed.

The JIVES Town simulation is simplified in many ways. Such simplifica-
tions will be addressed in future versions of the code. At present, there are
relatively few status and action variables (e.g., agents move only along a pre-
determined path, do not communicate with each other, have no memory, and
so on), and all such variables are binary. And all agents consult a single rule
base, in contrast to the case where different types of agents consult different
rule bases. We note that the methodology presented here is extendable to
handle a larger number of discrete variables having multiple categories and
that odds ratios can be formed for I x J tables (e.g., Agresti 1990). We
are not aware of the use of such ratios in regression models, however, and
experience would need to be gained in this regard.

Many methods exist to obtain rule base classifiers from a single data set
(see, e.g., Murthy 1998). Bayesian methods for CART (classification and
regression trees; see, e.g., Chipman, George, and McCulloch 1998; Denison,
Mallick, and Smith 1998) are also used for such optimization. It seems possi-
ble that the techniques used there to search spaces of trees could be adapted
to the JIVES Town problem. An issue to be overcome is that the problem
here is “backwards” from the usual CART approach. There, the idea is to
start with the single data set, presumably evolving from a single rule base,
and search the space of trees to find the one that gives the best fit to the
data. When done, that tree can be viewed as an estimate of the underlying
rule base.

For the JIVES Town problem, multiple data sets are generated from
known rule bases and the the approach is similar to so-called data farming.
That is, data are “grown” from several rule bases. Certain optimization
procedures, such as simulated annealing, search the space in their own way,
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and could possibly gain from methods underlying CART searches.

The biggest obstacle concerns the dimension of rule base space. Even for
the simplified version of JIVES Town, there are roughly 10** allowable rule
bases. It is not hard to imagine problems where the space to be searched is
so large as to strain comprehension. The curse of dimensionality could affect
approaches to optimization that work in bit string space more adversely that
it affects regression modeling, however. In that bit string space is of higher
dimension and rule base fitness behaves discontinuously as a function of it,
modeling of odds ratios may prove to be a more practical way of extracting
useful tactics.
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